Lecture 4

BST: Insertion & Deletion, Intro to Red-Black Trees

Insertion in a BST

Insertion in a BST

Insertion in a BST

Example:

Insertion in a BST

Example: Insert a node with 24 as key in the following BST.

Insertion in a BST

Example: Insert a node with 24 as key in the following BST.

Idea:

Insertion in a BST

Example: Insert a node with 24 as key in the following BST.

Idea: Find the correct leaf where it can be inserted.

Insertion in a BST

Example: Insert a node with 24 as key in the following BST.

Idea: Find the correct leaf where it can be inserted.

Insertion in a BST

Example: Insert a node with 24 as key in the following BST.

Idea: Find the correct leaf where it can be inserted.

Start from the root and reach

@ «— aleaf using BST properties

Insertion in a BST

Example: Insert a node with 24 as key in the following BST.

Idea: Find the correct leaf where it can be inserted.

Insertion in a BST

Example: Insert a node with 24 as key in the following BST.

Idea: Find the correct leaf where it can be inserted.

Insertion in a BST

Example: Insert a node with 24 as key in the following BST.

Idea: Find the correct leaf where it can be inserted.

@ @ Insert here as the right child.

Insertion in a BST

Example: Insert a node with 24 as key in the following BST.

Idea: Find the correct leaf where it can be inserted.

Insertion in a BST

Example: Insert a node with 24 as key in the following BST.

Idea: Find the correct leaf where it can be inserted.

Searching for the correct leaf
G @ @ @ and insertion takes ®(/) time.

Deletion in a BST

Deletion in a BST

Deletion can be more tricky than Insertion.

Deletion in a BST

Deletion can be more tricky than Insertion.

Let 7z be the node we want to delete.

Deletion in a BST

Deletion can be more tricky than Insertion.

Let z be the node we want to delete. Then, the following cases are possible:

Deletion in a BST

Deletion can be more tricky than Insertion.

Let z be the node we want to delete. Then, the following cases are possible:

e Case 1l: 7 has no children.

Deletion in a BST

Deletion can be more tricky than Insertion.

Let z be the node we want to delete. Then, the following cases are possible:

e Case 1l: 7 has no children.

® Case 2: 7 has only single child.

Deletion in a BST

Deletion can be more tricky than Insertion.

Let z be the node we want to delete. Then, the following cases are possible:

® Case 1: z has no children.
® Case 2: 7 has only single child.

e Case 3: 7 has two children.

Deletion in a BST

Deletion can be more tricky than Insertion.

Let z be the node we want to delete. Then, the following cases are possible:

® Case 1: 7 has no children. —

Easy
® Case 2: 7 has only single child. <

e Case 3: 7 has two children.

Deletion in a BST

Deletion can be more tricky than Insertion.

Let z be the node we want to delete. Then, the following cases are possible:

® Case l: 7 has no children. —

Easy
® Case 2: 7 has only single child. <

e Case 3: 7 has two Chi\dren.q\

Less easy

Deletion in a BST

Deletion can be more tricky than Insertion.

Let z be the node we want to delete. Then, the following cases are possible:

® Case l: 7 has no children. —

Easy
® Case 2: 7 has only single child. <

e Case 3: 7 has two Chi\dren.q\

Less easy

Note: Node 7 is provided as the input.

Deletion in a BST

Deletion in a BST

Case 1: 7 has no children.

Deletion in a BST

Case 1: 7 has no children. (WLOG assume z is a right child.)

Deletion in a BST

Case 1: 7 has no children. (WLOG assume z is a right child.)

NIL NIL

Deletion in a BST

Case 1: 7 has no children. (WLOG assume z is a right child.)

NIL NIL

Deletion in a BST

Case 1: 7 has no children. (WLOG assume z is a right child.)

NIL

NIL NIL

Deletion in a BST

Case 1: 7 has no children. (WLOG assume z is a right child.)

NIL

NIL NIL /

Make g's right child NIL

Deletion in a BST

Deletion in a BST

Case 2: 7 has one child. (WLOG assume 7 is a right child.)

Deletion in a BST

Case 2: 7 has one child. (WLOG assume 7 is a right child.)

Deletion in a BST

Case 2: 7 has one child. (WLOG assume 7 is a right child.)

Deletion in a BST

Case 2: 7 has one child. (WLOG assume 7 is a right child.)

Deletion in a BST

Case 2: 7 has one child. (WLOG assume 7 is a right child.)

q
Put r's subtree
/ in place of z.
) r

Deletion in a BST

Case 2: 7 has one child. (WLOG assume 7 is a right child.)

Deletion in a BST

Case 2: 7 has one child. (WLOG assume 7 is a right child.)

Deletion in a BST

Case 2: 7 has one child. (WLOG assume 7 is a right child.)

Deletion in a BST

Case 2: 7 has one child. (WLOG assume 7 is a right child.)

q
Put ['s subtree
in place of z.
< z /

Deletion in a BST

Deletion in a BST

Case 3: 7 has two children. (WLOG assume 7 is a right child.)

Deletion in a BST

Case 3: 7 has two children. (WLOG assume 7 is a right child.)

Deletion in a BST

Case 3: 7 has two children. (WLOG assume 7 is a right child.)

Deletion in a BST

Case 3: 7 has two children. (WLOG assume 7 is a right child.)

Deletion in a BST

Case 3: 7 has two children. (WLOG assume 7 is a right child.)

Two sub-cases:

— ® 7 has no left child.
® 7 has a left child.

Deletion in a BST

Case 3a: 7 has two children where its right child has no left child.

Deletion in a BST

Case 3a: 7 has two children where its right child has no left child.

Deletion in a BST

Case 3a: 7 has two children where its right child has no left child.

Deletion in a BST

Case 3a: 7 has two children where its right child has no left child.

Deletion in a BST

Case 3a: 7 has two children where its right child has no left child.

Replace z with r's subtree &

e . make [the left child of r

Deletion in a BST

Deletion in a BST

Case 3b: 7 has two children where its right child has a left child.

Deletion in a BST

Case 3b: 7 has two children where its right child has a left child.

Deletion in a BST

Case 3b: 7 has two children where its right child has a left child.

Successor of 7 — @

NIL

Deletion in a BST

Case 3b: 7 has two children where its right child has a left child.

Deletion in a BST

Case 3b: 7 has two children where its right child has a left child.

Deletion in a BST

Case 3b: 7 has two children where its right child has a left child.

Deletion in a BST

Case 3b: 7 has two children where its right child has a left child.

Deletion in a BST

Case 3b: 7 has two children where its right child has a left child.

Deletion in a BST

Case 3b: 7 has two children where its right child has a left child.

Deletion in a BST

Case 3b: 7 has two children where its right child has a left child.

Moving these requires

OL
/ constant time.

Are BSTs Good Enough?

Are BSTs Good Enough?

BSTs can perform Insert, Delete, Search, etc., in O(h) time.

Are BSTs Good Enough?

BSTs can perform Insert, Delete, Search, etc., in O(h) time.

But,

Are BSTs Good Enough?

BSTs can perform Insert, Delete, Search, etc., in O(h) time.

But,

Are BSTs Good Enough?

BSTs can perform Insert, Delete, Search, etc., in O(h) time.

But,

4) o
o’ g 4 s*
P A o N
LN o A4
]]]]
]]]]
]]]]

Best case: i = O(log n)

Are BSTs Good Enough?

BSTs can perform Insert, Delete, Search, etc., in O(h) time.

But,

4) o
o’ g 4 s*
P A o N
LN o A4
]]]]
]]]]
]]]]

Best case: i = O(log n)

Are BSTs Good Enough?

BSTs can perform Insert, Delete, Search, etc., in O(h) time.

But,

4) o
o’ $ ‘ Yo
P A o N
. o A4
L 3

]]]] .

]]]] \
]]]] .

Best case: i = O(log n) Worst case: h = O(n)

How to Restrict Height in BSTs?

How to Restrict Height in BSTs?

How to Restrict Height in BSTs?

/'

Skewness causes large height

How to Restrict Height in BSTs?

/

Skewness causes large height .

Idea: We can restrict the maximum height by keeping the BST balanced.

How to Restrict Height in BSTs?

/

Skewness causes large height .

Idea: We can restrict the maximum height by keeping the BST balanced.

/

For any node x, number of nodes in left-subtree(x) should not be too

small or large than number of nodes in right-subtree(x)

RB-Trees: How do they look like?

RB-Trees: How do they look like?

RB-Trees: How do they look like?

Every node is either red or black

/

235

RB-Trees: How do they look like?

Every node is either red or black

/

235

RB-Trees: How do they look like?

Every node is either red or black

RB-Trees: How do they look like?

Every node is either red or black

— Every non-NIL node has 2 children

RB-Trees: How do they look like?

Every red node has

/ both its children black

RB-Trees: How do they look like?

Every node has same number

-—

/ of black nodes on paths to leaves.

f

31

RB-Trees: Formal Description

RB-Trees: Formal Description

RB-trees are BSTs which satisty the following properties:

RB-Trees: Formal Description

RB-trees are BSTs which satisty the following properties:

® Fvery node has a colour either red or black.

RB-Trees: Formal Description

RB-trees are BSTs which satisty the following properties:
® Fvery node has a colour either red or black.

® Root is black.

RB-Trees: Formal Description

RB-trees are BSTs which satisty the following properties:
® Fvery node has a colour either red or black.
® Root is black.

® | eaf nodes are NIL nodes which are black in colour.

RB-Trees: Formal Description

RB-trees are BSTs which satisty the following properties:
® Fvery node has a colour either red or black.

® Root is black.

® | eaf nodes are NIL nodes which are black in colour.

® |f a node is red, then both its children are black.

RB-Trees: Formal Description

RB-trees are BSTs which satisty the following properties:

Every node has a colour either red or black.

Root is black.

Leat nodes are NIL nodes which are black in colour.
If a node is red, then both its children are black.

For every node, all the paths from the node to leaves contain the same

RB-Trees: Formal Description

RB-trees are BSTs which satisty the following properties:

Every node has a colour either red or black.

Root is black.

Leat nodes are NIL nodes which are black in colour.
If a node is red, then both its children are black.

For every node, all the paths from the node to leaves contain the same

number of black nodes.

RB-Trees: Formal Description

RB-trees are BSTs which satisty the following properties:

Every node has a colour either red or black.
Root is black.
| eaf nodes are NIL nodes which are black in colour.

If a node is red, then both its children are black. ‘/‘/

For every node, all the paths from the node to leaves contain the same

number of black nodes.

RB-Trees: Formal Description

Root

RB-trees are BSTs which satisty the following properties:
® Fvery node has a colour either red or black.

® Root is black.

® | eaf nodes are NIL nodes which are black in colour.

® |f a node is red, then both its children are black. ‘/‘/

® For every node, all the paths from the node to leaves contain the same

number of black nodes.

RB-Trees: Formal Description

Root

RB-trees are BSTs which satisty the following properties:

Every node has a colour either red or black.
Root is black.
| eaf nodes are NIL nodes which are black in colour. @

NIL
If a node is red, then both its children are black. ‘/‘/

For every node, all the paths from the node to leaves contain the same

number of black nodes.

NIL

RB-Trees: Formal Description

RB-trees are BSTs which satisty the following properties:

Every node has a colour either red or black.
Root is black.
| eaf nodes are NIL nodes which are black in colour.

NIL
If a node is red, then both its children are black. ‘/‘/

For every node, all the paths from the node to leaves contain the same

number of black nodes.

NIL

RB-Trees: Formal Description

RB-trees are BSTs which satisty the following properties:
® Fvery node has a colour either red or black.

® Root is black.

® | eaf nodes are NIL nodes which are black in colour.

NIL
® |f a node is red, then both its children are black. ‘/‘/

® For every node, all the paths from the node to leaves contain the same

number of black nodes.

RB-Trees: Formal Description

RB-trees are BSTs which satisty the following properties:

Every node has a colour either red or black.
Root is black. Both these properties ensure that

, , no path from root to a leaf is more than
Leaf nodes are NIL nodes which are black in colour. g

twice as long as any other.

If a node is red, then both its children are black. ‘/‘/

For every node, all the paths from the node to leaves contain the same

number of black nodes.

