
Lecture 4

BST: Insertion & Deletion, Intro to Red-Black Trees
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Example: Insert a node with  as key in the following BST. 24

Idea: Find the correct leaf where it can be inserted.

Searching for the correct leaf

and insertion takes  time.Θ(h)
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Deletion can be more tricky than Insertion.

Let  be the node we want to delete.z Then, the following cases are possible:

• Case   has no children.1: z

• Case   has only single child.2: z

• Case   has two children.3: z

Easy

Less easy

Note: Node  is provided as the input.z
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constant time.
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How to Restrict Height in BSTs?

Idea: We can restrict the maximum height by keeping the BST balanced.

For any node , number of nodes in left-subtree  should not be too 

small or large than number of nodes in right-subtree

x (x)
(x)

Skewness causes large height
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Every node has same number 

of black nodes on paths to leaves.
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RB-Trees: Formal Description

RB-trees are BSTs which satisfy the following properties:

• Every node has a colour either red or black.


• Root is black.


• Leaf nodes are NIL nodes which are black in colour.


• If a node is red, then both its children are black.


• For every node, all the paths from the node to leaves contain the same

number of black nodes.

Both these properties ensure that 

no path from root to a leaf is more than 


twice as long as any other.  



