
Lecture 4

BST: Insertion & Deletion, Intro to Red-Black Trees

Insertion in a BST

Insertion in a BST

20

6

1 15 22 31

25

12 18

Insertion in a BST
Example:

20

6

1 15 22 31

25

12 18

Insertion in a BST
Example:

20

6

1 15 22 31

25

12 18

Insert a node with as key in the following BST. 24

Insertion in a BST
Example:

20

6

1 15 22 31

25

12 18

Insert a node with as key in the following BST. 24

Idea:

Insertion in a BST
Example:

20

6

1 15 22 31

25

12 18

Insert a node with as key in the following BST. 24

Idea: Find the correct leaf where it can be inserted.

20

6

1 22 31

25

Example: Insert a node with as key in the following BST. 24

Idea: Find the correct leaf where it can be inserted.

15

12 18

Insertion in a BST

20

6

1 22 31

25

Example: Insert a node with as key in the following BST. 24

Idea: Find the correct leaf where it can be inserted.

15

12 18

Start from the root and reach

a leaf using BST properties

Insertion in a BST

20

6

1 22 31

25

Example: Insert a node with as key in the following BST. 24

Idea: Find the correct leaf where it can be inserted.

15

12 18

Insertion in a BST

20

6

1 22 31

25

Example: Insert a node with as key in the following BST. 24

Idea: Find the correct leaf where it can be inserted.

15

12 18

Insertion in a BST

20

6

1 22 31

25

Example: Insert a node with as key in the following BST. 24

Idea: Find the correct leaf where it can be inserted.

Insert here as the right child.

15

12 18

Insertion in a BST

24

20

6

1 22 31

25

Example: Insert a node with as key in the following BST. 24

Idea: Find the correct leaf where it can be inserted.

15

12 18

Insertion in a BST

24

20

6

1 22 31

25

Example: Insert a node with as key in the following BST. 24

Idea: Find the correct leaf where it can be inserted.

Searching for the correct leaf

and insertion takes time.Θ(h)

15

12 18

Insertion in a BST

Deletion in a BST

Deletion can be more tricky than Insertion.

Deletion in a BST

Deletion can be more tricky than Insertion.

Let be the node we want to delete.z

Deletion in a BST

Deletion can be more tricky than Insertion.

Let be the node we want to delete.z Then, the following cases are possible:

Deletion in a BST

Deletion can be more tricky than Insertion.

Let be the node we want to delete.z Then, the following cases are possible:

• Case has no children.1: z

Deletion in a BST

Deletion can be more tricky than Insertion.

Let be the node we want to delete.z Then, the following cases are possible:

• Case has no children.1: z

• Case has only single child.2: z

Deletion in a BST

Deletion can be more tricky than Insertion.

Let be the node we want to delete.z Then, the following cases are possible:

• Case has no children.1: z

• Case has only single child.2: z

• Case has two children.3: z

Deletion in a BST

Deletion can be more tricky than Insertion.

Let be the node we want to delete.z Then, the following cases are possible:

• Case has no children.1: z

• Case has only single child.2: z

• Case has two children.3: z

Easy

Deletion in a BST

Deletion can be more tricky than Insertion.

Let be the node we want to delete.z Then, the following cases are possible:

• Case has no children.1: z

• Case has only single child.2: z

• Case has two children.3: z

Easy

Less easy

Deletion in a BST

Deletion can be more tricky than Insertion.

Let be the node we want to delete.z Then, the following cases are possible:

• Case has no children.1: z

• Case has only single child.2: z

• Case has two children.3: z

Easy

Less easy

Note: Node is provided as the input.z

Deletion in a BST

Deletion in a BST

Case has no children.1: z

Deletion in a BST

Case has no children.1: z (WLOG assume is a right child.)z

Deletion in a BST

Case has no children.1: z

10

5

NIL NIL

(WLOG assume is a right child.)z

Deletion in a BST

z

q

Case has no children.1: z

10

5

NIL NIL

(WLOG assume is a right child.)z

Deletion in a BST

z

q

Case has no children.1: z

10

5

NIL NIL

NIL

(WLOG assume is a right child.)z

5

Deletion in a BST

z

q
q

Case has no children.1: z

10

5

NIL NIL

NIL

Make s right child NILq′￼

(WLOG assume is a right child.)z

5

Deletion in a BST

z

q
q

Deletion in a BST

Case has one child.2: z (WLOG assume is a right child.)z

Deletion in a BST

Case has one child.2: z

10

NIL 15

(WLOG assume is a right child.)z

5

Deletion in a BST

z

q

r

Case has one child.2: z

10

NIL 15

(WLOG assume is a right child.)z

5

Deletion in a BST

z

q

r

Case has one child.2: z

10

NIL 15

15

(WLOG assume is a right child.)z

5
5

Deletion in a BST

z

q

r

q

r

Case has one child.2: z

10

NIL 15

15

Put ’s subtree

in place of .

r
z

(WLOG assume is a right child.)z

5
5

Deletion in a BST

z

q

r

q

r

Case has one child.2: z (WLOG assume is a right child.)z

Deletion in a BST

Case has one child.2: z

10

NIL7

(WLOG assume is a right child.)z

5

Deletion in a BST

z

q

l

Case has one child.2: z

10

NIL7

(WLOG assume is a right child.)z

5

Deletion in a BST

z

q

l

Case has one child.2: z

10

NIL7

7

(WLOG assume is a right child.)z

5
5

Put ’s subtree

in place of .

l
z

Deletion in a BST

z

q

l

q

l

Deletion in a BST

Case has two children.3: z (WLOG assume is a right child.)z

Deletion in a BST

Case has two children.3: z

10

7

(WLOG assume is a right child.)z

5

15

Deletion in a BST

z

q

l r

Case has two children.3: z

10

7

(WLOG assume is a right child.)z

5

15

Deletion in a BST

z

q

l r

Case has two children.3: z

10

7

(WLOG assume is a right child.)z

5

15

?

Deletion in a BST

z

q

l r

Case has two children.3: z

10

7

(WLOG assume is a right child.)z

5

15

Deletion in a BST

z

q

l r

Two sub-cases:

• has no left child.

• has a left child.

r
r

Case a has two children where its right child has no left child.3 : z

Deletion in a BST

Case a has two children where its right child has no left child.3 : z

10

7

5

15

18NIL

Deletion in a BST

z

q

l r

y

Case a has two children where its right child has no left child.3 : z

10

7

5

15

18NIL

Deletion in a BST

z

q

l r

y

Case a has two children where its right child has no left child.3 : z

10

7

5

15

18NIL

7

5

15

18

Deletion in a BST

z

q

l r

y

q

l

r

y

Case a has two children where its right child has no left child.3 : z

10

7

5

15

18NIL

7

5

15

18

Replace with ’s subtree &

make the left child of

z r
l r

Deletion in a BST

z

q

l r

y

q

l

r

y

Deletion in a BST

Case b has two children where its right child has a left child.3 : z

Deletion in a BST

Case b has two children where its right child has a left child.3 : z

10

7

5

15

1814

Deletion in a BST

z

q

l r

yx

Case b has two children where its right child has a left child.3 : z

10

7 15

11

NIL 13

5

Successor of z

Deletion in a BST

z

q

l r

Case b has two children where its right child has a left child.3 : z

10

7 15

11

NIL 13

5

Deletion in a BST

z

q

l r

u

v

Case b has two children where its right child has a left child.3 : z

10

7 15

11

NIL 13

5

Replace

 with z u

Replace with s subtreeu v′￼

Deletion in a BST

z

q

l r

u

v

Case b has two children where its right child has a left child.3 : z

10

7 15

11

NIL 13

5

Replace

 with z u

Replace with s subtreeu v′￼

Deletion in a BST

z

q

l r

u

v

Case b has two children where its right child has a left child.3 : z

10

7 15

11

NIL 13

5

Replace

 with z u

Replace with s subtreeu v′￼

7 15

11

13

5

Deletion in a BST

z

q

l r

u

v

q

l r

u

v

Case b has two children where its right child has a left child.3 : z

10

7 15

11

NIL 13

5

7 15

11

13

5

Deletion in a BST

z

q

l r

u

v

q

l r

u

v

Case b has two children where its right child has a left child.3 : z

10

7 15

11

NIL 13

5

7 15

11

13

5

Deletion in a BST

z

q

l r

u

v

q

l r

u

v
Finding

takes time
u

Θ(h)

Case b has two children where its right child has a left child.3 : z

10

7 15

11

NIL 13

5

7 15

11

13

5

Deletion in a BST

z

q

l r

u

v

q

l r

u

v
Finding

takes time
u

Θ(h)

Moving these requires

constant time.

Are BSTs Good Enough?

Are BSTs Good Enough?

BSTs can perform Insert, Delete, Search, etc., in time.Θ(h)

Are BSTs Good Enough?

BSTs can perform Insert, Delete, Search, etc., in time.Θ(h)

But,

Are BSTs Good Enough?

BSTs can perform Insert, Delete, Search, etc., in time.Θ(h)

n/2

n /4 3n /4

n1 … …

But,

Are BSTs Good Enough?

BSTs can perform Insert, Delete, Search, etc., in time.Θ(h)

n/2

n /4 3n /4

n1 … …

Best case: h = Θ(log n)

But,

Are BSTs Good Enough?

BSTs can perform Insert, Delete, Search, etc., in time.Θ(h)

n/2

n /4 3n /4

n1 … …

Best case: h = Θ(log n)

1

2

n

3

But,

Are BSTs Good Enough?

BSTs can perform Insert, Delete, Search, etc., in time.Θ(h)

n/2

n /4 3n /4

n1 … …

Best case: h = Θ(log n)

1

2

n

3

Worst case: h = Θ(n)

But,

How to Restrict Height in BSTs?

1

2

n

3

How to Restrict Height in BSTs?

1

2

n

3

How to Restrict Height in BSTs?

Skewness causes large height

1

2

n

3

How to Restrict Height in BSTs?

Idea: We can restrict the maximum height by keeping the BST balanced.

Skewness causes large height

1

2

n

3

How to Restrict Height in BSTs?

Idea: We can restrict the maximum height by keeping the BST balanced.

For any node , number of nodes in left-subtree should not be too

small or large than number of nodes in right-subtree

x (x)
(x)

Skewness causes large height

RB-Trees: How do they look like?

RB-Trees: How do they look like?

20

6

1 22 31

25

15

12 18

RB-Trees: How do they look like?

20

6

1 22 31

25

15

12 18

Every node is either red or black

RB-Trees: How do they look like?

20

6

1 22 31

25

15

NIL

12 18

Every node is either red or black

RB-Trees: How do they look like?

20

6

1 22 31

25

15

NIL

12 18

Every node is either red or black

RB-Trees: How do they look like?

20

6

1 22 31

25

15

NIL

12 18

Every node is either red or black

Every non-NIL node has children2

RB-Trees: How do they look like?

20

6

1 22 31

25

15

NIL

12 18

Every red node has

both its children black

RB-Trees: How do they look like?

20

6

1 22 31

25

15

NIL

12 18

Every node has same number

of black nodes on paths to leaves.

RB-Trees: Formal Description

RB-Trees: Formal Description

RB-trees are BSTs which satisfy the following properties:

RB-Trees: Formal Description

RB-trees are BSTs which satisfy the following properties:

• Every node has a colour either red or black.

RB-Trees: Formal Description

RB-trees are BSTs which satisfy the following properties:

• Every node has a colour either red or black.

• Root is black.

RB-Trees: Formal Description

RB-trees are BSTs which satisfy the following properties:

• Every node has a colour either red or black.

• Root is black.

• Leaf nodes are NIL nodes which are black in colour.

RB-Trees: Formal Description

RB-trees are BSTs which satisfy the following properties:

• Every node has a colour either red or black.

• Root is black.

• Leaf nodes are NIL nodes which are black in colour.

• If a node is red, then both its children are black.

RB-Trees: Formal Description

RB-trees are BSTs which satisfy the following properties:

• Every node has a colour either red or black.

• Root is black.

• Leaf nodes are NIL nodes which are black in colour.

• If a node is red, then both its children are black.

• For every node, all the paths from the node to leaves contain the same

RB-Trees: Formal Description

RB-trees are BSTs which satisfy the following properties:

• Every node has a colour either red or black.

• Root is black.

• Leaf nodes are NIL nodes which are black in colour.

• If a node is red, then both its children are black.

• For every node, all the paths from the node to leaves contain the same

number of black nodes.

RB-Trees: Formal Description

RB-trees are BSTs which satisfy the following properties:

• Every node has a colour either red or black.

• Root is black.

• Leaf nodes are NIL nodes which are black in colour.

• If a node is red, then both its children are black.

• For every node, all the paths from the node to leaves contain the same

number of black nodes.

RB-Trees: Formal Description

RB-trees are BSTs which satisfy the following properties:

• Every node has a colour either red or black.

• Root is black.

• Leaf nodes are NIL nodes which are black in colour.

• If a node is red, then both its children are black.

• For every node, all the paths from the node to leaves contain the same

Root

number of black nodes.

RB-Trees: Formal Description

RB-trees are BSTs which satisfy the following properties:

• Every node has a colour either red or black.

• Root is black.

• Leaf nodes are NIL nodes which are black in colour.

• If a node is red, then both its children are black.

• For every node, all the paths from the node to leaves contain the same

Root

NIL

NIL
number of black nodes.

RB-Trees: Formal Description

RB-trees are BSTs which satisfy the following properties:

• Every node has a colour either red or black.

• Root is black.

• Leaf nodes are NIL nodes which are black in colour.

• If a node is red, then both its children are black.

• For every node, all the paths from the node to leaves contain the same

Root

NIL

NIL
number of black nodes.

RB-Trees: Formal Description

RB-trees are BSTs which satisfy the following properties:

• Every node has a colour either red or black.

• Root is black.

• Leaf nodes are NIL nodes which are black in colour.

• If a node is red, then both its children are black.

• For every node, all the paths from the node to leaves contain the same

Root

NIL

NIL
number of black nodes.

RB-Trees: Formal Description

RB-trees are BSTs which satisfy the following properties:

• Every node has a colour either red or black.

• Root is black.

• Leaf nodes are NIL nodes which are black in colour.

• If a node is red, then both its children are black.

• For every node, all the paths from the node to leaves contain the same

number of black nodes.

Both these properties ensure that

no path from root to a leaf is more than

twice as long as any other.

