Lecture 4

BST: Insertion & Deletion, Intro to Red-Black Trees
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Insertion in a BST

Example: Insert a node with 24 as key in the following BST.

Idea: Find the correct leaf where it can be inserted.

Searching for the correct leaf
G @ @ @ and insertion takes ®(/) time.
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Deletion in a BST

Deletion can be more tricky than Insertion.

Let z be the node we want to delete. Then, the following cases are possible:

® Case l: 7 has no children. —

Easy
® Case 2: 7 has only single child. <

e Case 3: 7 has two Chi\dren.q\

Less easy

Note: Node 7 is provided as the input.
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Case 1: 7 has no children. (WLOG assume z is a right child.)

NIL

NIL NIL /

Make g's right child NIL
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Case 2: 7 has one child. (WLOG assume 7 is a right child.)

q
Put ['s subtree
in place of z.
< z /
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Case 3: 7 has two children. (WLOG assume 7 is a right child.)

Two sub-cases:

— ® 7 has no left child.
® 7 has a left child.
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Case 3a: 7 has two children where its right child has no left child.

Replace z with r's subtree &

e . make [ the left child of r
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Successor of 7 — @

NIL
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Case 3b: 7 has two children where its right child has a left child.

Moving these requires

OL
/ constant time.
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Are BSTs Good Enough?

BSTs can perform Insert, Delete, Search, etc., in O(h) time.

But,
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Best case: i = O(log n) Worst case: h = O(n)
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/

Skewness causes large height .

Idea: We can restrict the maximum height by keeping the BST balanced.

/

For any node x, number of nodes in left-subtree(x) should not be too

small or large than number of nodes in right-subtree(x)
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— Every non-NIL node has 2 children
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/ both its children black



RB-Trees: How do they look like?

Every node has same number

-—

/ of black nodes on paths to leaves.

f

31
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RB-Trees: Formal Description

RB-trees are BSTs which satisty the following properties:

Every node has a colour either red or black.
Root is black. Both these properties ensure that

, , no path from root to a leaf is more than
Leaf nodes are NIL nodes which are black in colour. g

twice as long as any other.

If a node is red, then both its children are black. ‘/‘/

For every node, all the paths from the node to leaves contain the same

number of black nodes.



